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1 Introduction

The purpose of this paper is to provide further investigation and expansion
of the original work of Paul Petzoldt in his guide book, Teton Trails: A hik-
ing guide to the Teton Range with stories, history, and personal experiences. In
1976, Petzoldt proposed a unit of measurement useful for accurately gauging the
difficulty of any one particular mountain trail, thus allowing hikers to plan effec-
tively and make the appropriate preparations. An ”energy mile”, as he defined
it, is the amount of energy required to traverse one mile, with an additional two
energy miles for every 1,000 ft of elevation gain i.e an individual hiking one mile
with the aforementioned elevation gain will have used the equivalent of three
energy miles. His work led to a study conducted in 2010 by students at Western
Carolina University Department of Exercise Physiology under the supervision
and direction of faculty members Dr.Maridy Troy and Maurice Phipps, Ph.D.
Their efforts confirmed Petzoldt energy mile theory, albeit with a value of 1.6
energy miles for every 1,000 ft of elevation. However upon further analysis we
discovered that this system is likely idealized and may not necessarily translate
to trails found in nature. Thus, we believe this system must incorporate the
following variables; (1) variations in elevation of the projected hiking distances,
(2) consideration for negative (downwards) slopes, and (3) the various terrains
one might encounter e.g dirt, snow, sleet, etc.

2 Statement of Problem

Devise an algorithm that calculates the energy miles of a given route based
on the elevation profile of the route. The algorithm will incorporate the use
of interpolation, differentiation, and numerical integration. The system will
be tested on various routes of well-established qualitative difficulty to verify
accuracy.
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3 Description of The Mathematics

For the old system we make our energy effort of section i of the route to be:
Ei = ∆li + 10.56∆yi where ∆li is the overall length of the section and ∆yi is
the change of elevation within the section.

We then introduce the difficulty coefficient Di which quantifies the difficulty
of traversing the section i of the route. Using this difficulty coefficient, we then
adapt our energy effort equation to ∆Ei = Di∆li.

We are now tasked with finding an appropriate formulation of the difficulty
coefficient as a function of the slope of the section. It is clear that the difficulty
coefficient should have the following properties:

• Di = 1 for mi = 0

• Di > 1 for mi > 0

• Di < 1 for mi < 0

Based off of existing literature in exercise science, we can use an exponential
function to model the difficulty. We introduce Di = eαmi , where we choose
α = 4.2351 based off of data collected from a study by Balducci et al. published
in the Journal of Sports Science and Medicine on the energy costs of well-trained
mountain runners on different incline grades. In this study, a chart is given
comparing the energy cost of running to the percent grade of the treadmill
that the runners were running on. We normalize this data so that at a zero
percent grade (i.e. flat terrain) the energy cost is unity. Thus, the normalized
data is readily understood as a difficulty coefficient that is a function of the
inclination of the terrain. Since our proposal is to have an exponential function
represent the difficulty coefficient, we are able to fit an exponential function to
this normalized data with R2 = 0.9856, which yields a value for α of 4.2351.
It is important to note that α is independent of the route, but not necessarily
independent of the physical condition of an athlete or adventurer, as the data in
the study was taken from elite mountain runners in excellent physical condition.
Thus, more average individuals may have higher values of α, which would, of
course, yield higher difficulty coefficients.

Now in the continuum limit, that is, ∆li → 0, we have the differential
dE = D(l)dl = eαp

′
n(l)dl, where p′n(l) is the derivative of the interpolation

polynomial of the elevation profile GPS data that is readily acquired with online
software. Therefore, if the length of the entire route is L,

E =

∫ L

0

eαp
′
n(l)dl.

For the special case of an“Out and Back” Route, the way back is exactly
the opposite as the way out, (i.e. the way back has an interpolant of −p′n(l)),
therefore:

E =

∫ L/2

0

eαp
′
n(l)dl +

∫ L/2

0

e−αp
′
n(l)dl,
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Thus,

E = 2

∫ L/2

0

cosh(αp′n(l))dl.

4 Description of the Algorithm

This section will describe the numerical methods used to approximately solve the
problem formalized in the previous section. The two main numerical techniques
required are interpolation and numerical integration.

4.1 Interpolation

The elevation profile data we receive from various online tools consists of ordered
pairs of the form (total distance, altitude). We have a finite number of points
but our algorithm requires information at points between these given points.
Therefore we need an effective interpolation technique.

The first interpolation technique we will explore is polynomial interpolation.
This is simply fitting an n degree polynomial to n + 1 data points. There are
various basis functions we can use to achieve this, but we will use the Lagrange
form because we can analytically find an expression of its derivative without
much trouble. The polynomial is given by:

pn(l) =

n∑
i=0

`i(l)f(li)

The derivative of this polynomial is given by:

p′n(l) =

n∑
i=0

`′i(l)f(li)

where

`′i(l) =

n∑
j=0,j 6=i

 1

li − lj

n∏
m=0,m 6=(i,j)

l − lm
li − lm


However, since the data we will be using consists of a very large number

of points, the polynomial interpolant will be of very high degree. High degree
polynomials tend to be very oscillatory and thus will not accurately predict the
points between the nodes very well.

The deficiencies of high degree polynomial interpolation motivates the need
for a better interpolation technique. We used a natural cubic spline interpolation
to correct these wild oscillations while still maintaining differentiability and the
correct nature of the route. The cubic spline equation for section i is given
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below. The values of zi are found once at the beginning of the program then
used when needed.

Ci(x) = zi+1

6hi
(x− ti)3 + zi

6hi
(ti+1 − x)3 + (yi+1

hi
− hi

6 zi+1)(x− ti) + ( yihi
− hi

6 zi)(ti+1 − x)

The first derivative of this interpolant can be found analytically. This ex-
pression is given below and is easy to compute.

C ′i(x) = zi+1

2hi
(x− ti)2 − zi

2hi
(ti+1 − x)2 + (yi+1

hi
− hi

6 zi+1)− ( yihi
− hi

6 zi)

4.2 Numerical Integration

Now that a valid interpolation technique has been found, we can approximate
the integral describing the difficulty rating of the route given in the previous
section. We will approach this approximation using two different techniques:
Composite Trapezoid Rule and Composite Simpson’s Rule.

The Composite Trapezoid rule for an ”out-and-back” route is given below:

E = 2

∫ L/2

0

cosh(αC ′(l))dl ≈ 2

n−1∑
i=0

(
xi+1 − xi

2
)(cosh(αC ′(xi))+cosh(αC ′(xi+1)))

The Composite Simpson’s rule for an ”out-and-back” route is given below:

E = 2

∫ L/2

0

f(l)dl ≈ 2

n/2∑
i=1

h

3
(f(x2i−2) + 4f(x2i−1) + f(x2i))

where f(x) = cosh(αC ′(x))
For small spacing, h, we expect the Composite Simpson’s Rule to be a more

accurate approximation than the Composite Trapezoid Rule.

5 Results

We tested this algorithm first on a steep hiking route to the highest peak in
Colorado. This helped reveal the best numerical methods to use for other routes.
We then demonstrated the utility of the algorithm for comparing two different
routes by examining two different marathon routes.

5.1 Mt. Elbert East Ridge Trail Study

The first step was to develop a proper interpolation procedure for the elevation
profile data. Using polynomial interpolation with 250 points yielded a 249 de-
gree polynomial interpolant that had massive fluctuations near the endpoints.
This is a common problem with high-degree polynomials called Runge’s Phe-
nomenon. We reduced the system to a 4 degree polynomial which alleviated
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Runge’s phenomenon but smoothed the profile so much that it no longer had
the defining characteristics of the route.

Figure 1: 249 Degree Polynomial Inter-
polant

Figure 2: 4 Degree Polynomial Inter-
polant

Clearly, a different interpolation method had to be used. In order to maintain
the complete differentiability at all points on the elevation profile while main-
taining the right flavor of the route, we used cubic spline interpolation. The
natural cubic spline interpolation maintained the characteristics of the route
without any abnormal fluctuations. Clearly, cubic spline interpolation would be
the method we would use. Finding the first derivative of the interpolant also
proved to be simple.

Figure 3: Natural Cubic Spline Inter-
polant

Figure 4: First Derivative of Cubic
Spline Interpolant

The next step was to approximate the integral mentioned previously. We
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approached this with two different techniques: Composite Trapezoid Rule and
Composite Simpson’s Rule. Our spacing between points was so small that we
expect Composite Simpson’s Rule to have less error because it is fourth order
accurate. For this simulation, both methods gave similar results because of the
very small step size of h = 0.0047.

The Composite Trapezoid Rule gave a rating of 13.4398 energy miles while
the Composite Simpson’s Rule gave a rating of 13.4199 energy miles. The actual
length of the trail is 9.318 miles. The additional 4.1218 miles are due to the
extremely steep portions of the route that our algorithm incorporates into the
rating because of the difficulty of traversing these steep regions.

5.2 Berlin vs. Rim Rock Marathon Comparative Study

We compared the Berlin and Rim Rock marathons to demonstrate the compar-
ative utility of the algorithm. The Berlin marathon is a very flat and ”easy”
course while the Rim Rock marathon is a very steep and difficult marathon
through the Rocky Mountains of Colorado. Clearly, the Rim Rock marathon
should give a much larger energy mile rating.

Figure 5: Slope of Berlin Marathon Figure 6: Slope of Rim Rock Marathon

We used cubic spline interpolation with the composite Simpson’s Rule to
approximate the difficult of the routes. The Berlin Marathon was found to have
a difficulty rating of 26.4132 energy miles while the Rim Rock marathon had
a difficulty rating of 35.4437 energy miles. Clearly, the Rim Rock marathon is
the more challenging course and would be about equivalent to running 35.4437
miles on a perfectly flat course.

If an athlete wanted to qualify for a prestigious race they would want to
achieve their fastest time. Using this system, they could quantitatively deter-
mine the easiest course that would give them the best chance at qualifying.
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6 Conclusions

The novel technique for quantitatively determining route difficulty that was
developed in this report is an improvement on the traditional method described
in the introduction in that it can be applied to any route given GPS data of the
route and that it accounts for intermediate points along the route in between the
endpoints of the hike. However, the algorithm still preserves the ”energy mile”
developed by Petzoldt that many hikers are familiar with. Thus, difficulties in
units of energy miles can be assigned to any route for backpackers to accurately
assess their energy needs, for runners to gauge the difficulty of a run and train
accordingly, or for casual hikers to have some idea of what they are to embark
on on their next day hike.

However, there are some limitations in using this algorithm to quantify the
difficulty of a route. In determining the constant in the exponent of the dif-
ficulty coefficient, α, a study was used that tested elite mountain runners and
determined their energy costs depending on the incline of the treadmill they ran
on. It is obvious that elite mountain runners have far-above-average physical
conditioning, thus the values obtained in this report may not be completely rep-
resentative for less-fit individuals. Additionally, the study only provided three
points to fit the exponential curve to, which decreases confidence in the value
for α that was obtained. Also, the study did not include any information on
negative slopes, so the claim that D < 1 for m < 0 was made purely off of
the personal experience of the authors, who deem it reasonable for the moder-
ately negative slopes encountered in most routes. Finally, the algorithm was not
tested for slopes outside of the interval [-1,1] where the exponential difficulty
coefficient may not accurately reflect the true difficulty. Without data that in-
vestigates the energy cost at such extreme inclines and declines in the exercise
science literature, we cannot conclude this algorithm’s validity outside of this
interval of slopes. However, most hikes, and certainly almost all runs, do not
encounter such extreme incline grades, so this is not such a pressing issue.

There is still ample room to further refine this algorithm we developed. As
aforementioned, the value for α obtained in this report may not be representative
for more average-conditioned individuals. If a new study were to emerge in
exercise science literature that used average-conditioned subjects, a new value
for α could be found to further increase the validity of this tool for all people.
However, even as is, this algorithm still can serve as a powerful comparative tool
for more average-conditioned users to compare the difficulty of a route to the
difficulty of one they have already completed. Additionally, it is reasonable to
retain from Petzoldt’s original theorem that when E < 5, the route is easy, when
5 ≤ E < 10, the route is intermediate, and when E ≥ 10, the route is strenuous
for most people. Furthermore, there are several other physical parameters such
as altitude, climate, and ground conditions (snow, dirt, etc.) that could be
implemented with the support of studies in exercise science to more accurately
rate the difficulty of a course. Of these physical parameters, altitude is certainly
the most influential on route difficulty, as the concentration of oxygen in the
air decreases significantly at higher altitudes. Of course, acclimatization to
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higher altitudes would minimize this effect on the route difficulty. Finally, with
the hopes of increasing the accessibility of this tool, we plan on making the
codebase open-source on Github to help others more accurately plan their next
outdoor adventure.

With this novel technique for rating route difficulties, we hope to improve
the experience of any athlete, adventurer, or casual hiker on their next endeavor
by providing a reliable estimation of what they should expect on their route.

7 Program Listing

1 %Evaluates the cubic s p l i n e i n t e r p o l a n t at g iven po int
2 f unc t i on va l = e v a l s p l i n e (n , t , y , z , x )
3 f o r i=n−1:−1:1
4 i f x−t ( i )>=0
5 break ;
6 end
7 end
8 h=t ( i +1) −t ( i ) ;
9 tmp = ( z ( i ) /2) + (x−t ( i ) ) ∗( z ( i +1)−z ( i ) ) /(6∗h) ;

10 tmp = −(h/6) ∗( z ( i +1)+2∗z ( i ) )+(y ( i +1)−y ( i ) ) /h + (x−t ( i )
) ∗tmp ;

11 va l = y ( i ) + (x−t ( i ) ) ∗tmp ;
12 end

1 %Evaluates the d e r i v a t i v e o f cub ic s p l i n e i n t e r p o l a n t at
g iven po int

2 f unc t i on va l = e v a l s p l i n e d e r i v (n , t , y , z , x )
3 f o r i=n−1:−1:1
4 i f x−t ( i )>=0
5 break ;
6 end
7 end
8 h=t ( i +1) −t ( i ) ;
9 tmp = ( z ( i +1)/(2∗h) ) ∗ (x−t ( i ) ) ˆ2 − ( z ( i ) /(2∗h) ) ∗ ( t (

i +1)−x ) ˆ2 + ( y ( i +1)/h − h∗z ( i +1)/6) − ( y ( i ) /h−h∗z ( i
) /6) ;

10 va l = tmp ;
11 end

1 c l o s e a l l ; c l e a r a l l ;
2 %Read in data va lue s
3 th ing = readmatr ix (” m t e l b e r t e a s t r i d g e . csv ”) ;
4 t = th ing ( : , 2 ) ;
5 y = thing ( : , 1 ) ;
6
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7 %f i n d cubic s p l i n e z va lue s
8 [ n , r ]= s i z e ( t )
9 f o r i =1:n−1

10 h( i ) = t ( i +1)−t ( i ) ;
11 b( i ) = ( y ( i +1)−y ( i ) ) /h( i ) ;
12 end
13 u (1) = 2∗(h (1 )+h (2) ) ;
14 v (1 ) = 6∗(b (2 )−b (1) ) ;
15 f o r i =2:n−2
16 u( i ) = 2∗(h( i +1) + h( i ) ) − h( i ) ˆ2/u( i −1) ;
17 v ( i ) = 6∗(b( i +1)−b( i ) ) − h( i ) ∗v ( i −1)/u( i −1) ;
18 end
19 z (n) =0;
20 f o r i=n−1:−1:2
21 z ( i ) = ( v ( i −1)−h( i ) ∗z ( i +1) ) /u( i −1) ;
22 end
23 z (1 )=0
24

25 %f i n d and p lo t e l e v a t i o n p r o f i l e i n t e r p o l a n t
26 d i s t=l i n s p a c e (0 , 4 . 659 , 1000 ) ;
27 f o r x=1:1000
28 s o l ( x ) = e v a l s p l i n e (n , t , y , z , d i s t ( x ) ) ;
29 end
30 f i g u r e ( ’ Po s i t i on ’ , [ 1 0 , 1 0 , 9 0 0 , 7 0 0 ] )
31 hold on
32 box on
33 s e t ( gca , ’ Linewidth ’ , 2 . 0 , ’ FontSize ’ ,20)
34 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
35 s e t ( gca , ’ YMinorTick ’ , ’ on ’ )
36 s e t ( gca , ’XLim ’ , [ 0 ,max( t ) ] )
37 t i t l e (” Cubic Sp l ine ”)
38 x l a b e l ( ’ Distance Trave l l ed (mi ) ’ )
39 y l a b e l ( ’ E levat ion ( f t above sea l e v e l ) ’ )
40 p lo t ( d i s t , so l , ’ r ’ , ’ l i n ew id th ’ , 2 . 5 , ’ markers i ze ’ , 8 ) ;
41 y l a b e l (” Al t i tude ( f t ) ”) ;
42 x l a b e l (” Distance Traveled ( mi l e s ) ”)
43

44 %f i n d and p lo t d e r i v a t i v e o f e l e v a t i o n p r o f i l e
i n t e r p o l a n t

45 d i s t=l i n s p a c e (0 , 4 . 659 , 1000 ) ;
46 f o r x=1:1000
47 s o l ( x ) = e v a l s p l i n e d e r i v (n , t , y , z , d i s t ( x ) ) ;
48 end
49 s o l = s o l ./5280
50 f i g u r e ( ’ Po s i t i on ’ , [ 1 0 , 1 0 , 9 0 0 , 7 0 0 ] )
51 hold on
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52 box on
53 s e t ( gca , ’ Linewidth ’ , 2 . 0 , ’ FontSize ’ ,20)
54 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
55 s e t ( gca , ’ YMinorTick ’ , ’ on ’ )
56 s e t ( gca , ’XLim ’ , [ 0 ,max( t ) ] )
57 t i t l e (” Der iva t i ve o f Cubic Sp l ine ”)
58 x l a b e l ( ’ Distance Trave l l ed (mi ) ’ )
59 y l a b e l ( ’ E levat ion ( f t above sea l e v e l ) ’ )
60 p lo t ( d i s t , so l , ’ r ’ , ’ l i n ew id th ’ , 2 . 5 , ’ markers i ze ’ , 8 ) ;
61 y l a b e l (” Slope ”) ;
62 x l a b e l (” Distance Traveled ( mi l e s ) ”)
63

64 %composite t rapezo id r u l e
65 x=l i n s p a c e (0 , t (250) ,1000) ;
66 app = 0 ;
67 a = 4 . 2 3 5 1 ;
68 f o r i =1:999
69 app = app + ( ( x ( i +1) − x ( i ) ) /2) ∗( cosh ( a∗

e v a l s p l i n e d e r i v (n , t , y , z , x ( i +1) ) /5280) + cosh ( a∗
e v a l s p l i n e d e r i v (n , t , y , z , x ( i ) ) /5280) ) ;

70 end
71 app=app∗2
72

73 %composite simpson ’ s r u l e
74 x=l i n s p a c e (0 , t (250) ,1000) ;
75 app = 0 ;
76 a = 4 . 2 3 5 1 ;
77 h=(x (1000)−x (1 ) ) /1000 ;
78 f o r i =2:500
79 app = app + (h/3) ∗( cosh ( a∗ e v a l s p l i n e d e r i v (n , t , y , z , x

(2∗ i −2) ) /5280) + 4∗ cosh ( a∗ e v a l s p l i n e d e r i v (n , t , y ,
z , x (2∗ i −1) ) /5280) + cosh ( a∗ e v a l s p l i n e d e r i v (n , t , y
, z , x (2∗ i ) ) /5280) ) ;

80 end
81 app=app∗2

1 c l o s e a l l ; c l e a r a l l ;
2 th ing = readmatr ix (” ber l in marathon . csv ”) ;
3 t = th ing ( : , 2 ) ;
4 y = thing ( : , 1 ) ;
5 [ n , r ]= s i z e ( t )
6 f o r i =1:n−1
7 h( i ) = t ( i +1)−t ( i ) ;
8 b( i ) = ( y ( i +1)−y ( i ) ) /h( i ) ;
9 end

10 u (1) = 2∗(h (1 )+h (2) ) ;
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11 v (1 ) = 6∗(b (2 )−b (1) ) ;
12 f o r i =2:n−2
13 u( i ) = 2∗(h( i +1) + h( i ) ) − h( i ) ˆ2/u( i −1) ;
14 v ( i ) = 6∗(b( i +1)−b( i ) ) − h( i ) ∗v ( i −1)/u( i −1) ;
15 end
16 z (n) =0;
17 f o r i=n−1:−1:2
18 z ( i ) = ( v ( i −1)−h( i ) ∗z ( i +1) ) /u( i −1) ;
19 end
20 z (1 )=0
21

22 d i s t=l i n s p a c e (0 ,max( t ) ,1000) ;
23 f o r x=1:1000
24 s o l ( x ) = e v a l s p l i n e d e r i v (n , t , y , z , d i s t ( x ) ) ;
25 end
26 s o l = s o l ./5280
27 f i g u r e ( ’ Po s i t i on ’ , [ 1 0 , 1 0 , 9 0 0 , 7 0 0 ] )
28 hold on
29 box on
30 s e t ( gca , ’ Linewidth ’ , 2 . 0 , ’ FontSize ’ ,20)
31 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
32 s e t ( gca , ’ YMinorTick ’ , ’ on ’ )
33 s e t ( gca , ’XLim ’ , [ 0 ,max( t ) ] )
34 t i t l e (” Slope P r o f i l e Be r l i n ”)
35 x l a b e l ( ’ Distance Trave l l ed (mi ) ’ )
36 y l a b e l ( ’ E levat ion ( f t above sea l e v e l ) ’ )
37 p lo t ( d i s t , so l , ’ r ’ , ’ l i n ew id th ’ , 2 . 5 , ’ markers i ze ’ , 8 ) ;
38 y l a b e l (” Slope ”) ;
39 x l a b e l (” Distance Traveled ( mi l e s ) ”)
40

41

42 x=l i n s p a c e (0 , t (2922) ,10000) ;
43 app = 0 ;
44 m=(y (2922)−y (1 ) ) /(5280∗( t (2922)−t (1 ) ) ) ;
45 a = 4 . 2 3 5 1 ;
46 f o r i =1:9999
47 app = app + ( ( x ( i +1) − x ( i ) ) /2) ∗( exp ( a∗

e v a l s p l i n e d e r i v (n , t , y , z , x ( i +1) ) /5280) + exp ( a∗
e v a l s p l i n e d e r i v (n , t , y , z , x ( i ) ) /5280) ) ;

48 end
49 app
50

51 x=l i n s p a c e (0 , t (2922) ,10000) ;
52 app = 0 ;
53 m=(y (2922)−y (1 ) ) /(5280∗( t (2922)−t (1 ) ) ) ;
54 a = 4 . 2 3 5 1 ;
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55 h=(x (10000)−x (1 ) ) /10000;
56 f o r i =2:5000
57 app = app + (h/3) ∗( exp ( a∗ e v a l s p l i n e d e r i v (n , t , y , z , x

(2∗ i −2) ) /5280) + 4∗ exp ( a∗ e v a l s p l i n e d e r i v (n , t , y , z
, x (2∗ i −1) ) /5280) + exp ( a∗ e v a l s p l i n e d e r i v (n , t , y , z
, x (2∗ i ) ) /5280) ) ;

58 end
59 app

1 c l o s e a l l ; c l e a r a l l ;
2 th ing = readmatr ix (” r im rock . csv ”) ;
3 t = th ing ( : , 1 ) ;
4 y = thing ( : , 2 ) ;
5 [ n , r ]= s i z e ( t )
6 f o r i =1:n−1
7 h( i ) = t ( i +1)−t ( i ) ;
8 b( i ) = ( y ( i +1)−y ( i ) ) /h( i ) ;
9 end

10 u (1) = 2∗(h (1 )+h (2) ) ;
11 v (1 ) = 6∗(b (2 )−b (1) ) ;
12 f o r i =2:n−2
13 u( i ) = 2∗(h( i +1) + h( i ) ) − h( i ) ˆ2/u( i −1) ;
14 v ( i ) = 6∗(b( i +1)−b( i ) ) − h( i ) ∗v ( i −1)/u( i −1) ;
15 end
16 z (n) =0;
17 f o r i=n−1:−1:2
18 z ( i ) = ( v ( i −1)−h( i ) ∗z ( i +1) ) /u( i −1) ;
19 end
20 z (1 )=0
21

22 d i s t=l i n s p a c e (0 ,max( t ) ,1000) ;
23 f o r x=1:1000
24 s o l ( x ) = e v a l s p l i n e d e r i v (n , t , y , z , d i s t ( x ) ) ;
25 end
26 s o l = s o l ./5280
27 f i g u r e ( ’ Po s i t i on ’ , [ 1 0 , 1 0 , 9 0 0 , 7 0 0 ] )
28 hold on
29 box on
30 s e t ( gca , ’ Linewidth ’ , 2 . 0 , ’ FontSize ’ ,20)
31 s e t ( gca , ’ XMinorTick ’ , ’ on ’ )
32 s e t ( gca , ’ YMinorTick ’ , ’ on ’ )
33 s e t ( gca , ’XLim ’ , [ 0 ,max( t ) ] )
34 t i t l e (” Slope P r o f i l e Rim Rock ”)
35 x l a b e l ( ’ Distance Trave l l ed (mi ) ’ )
36 y l a b e l ( ’ E levat ion ( f t above sea l e v e l ) ’ )
37 p lo t ( d i s t , so l , ’ r ’ , ’ l i n ew id th ’ , 2 . 5 , ’ markers i ze ’ , 8 ) ;
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38 y l a b e l (” Slope ”) ;
39 x l a b e l (” Distance Traveled ( mi l e s ) ”)
40

41

42 x=l i n s p a c e (0 , t (648) ,2000) ;
43 app = 0 ;
44 a = 4 . 2 3 5 1 ;
45 f o r i =1:1999
46 app = app + ( ( x ( i +1) − x ( i ) ) /2) ∗( exp ( a∗

e v a l s p l i n e d e r i v (n , t , y , z , x ( i +1) ) /5280) + exp ( a∗
e v a l s p l i n e d e r i v (n , t , y , z , x ( i ) ) /5280) ) ;

47 end
48 app
49

50 x=l i n s p a c e (0 , t (648) ,2000) ;
51 app = 0 ;
52 a = 4 . 2 3 5 1 ;
53 h=(x (2000)−x (1 ) ) /2000 ;
54 f o r i =2:1000
55 app = app + (h/3) ∗( exp ( a∗ e v a l s p l i n e d e r i v (n , t , y , z , x

(2∗ i −2) ) /5280) + 4∗ exp ( a∗ e v a l s p l i n e d e r i v (n , t , y , z
, x (2∗ i −1) ) /5280) + exp ( a∗ e v a l s p l i n e d e r i v (n , t , y , z
, x (2∗ i ) ) /5280) ) ;

56 end
57 app
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